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Growing Icosahedra

Yasushi Kajikawa

It was discovered that by dividing an icosahedron into ten types of small modules, we can construct various 5-fold
symmetrical polyhedra by recombining the modules again radially and symmetrically. This discovery suggests possible new
paths of interaction between polyhedra, which are the subject of intense debate with respect to quasicrystals.

In crystallography, periodicity defines a structure that has both rotational and translational symmetry. Because of this
restriction, 5-fold symmetry was ruled out in possible solutions to the question of the structure of crystals. However, 5-fold
quasicrystals exist and have now been discovered. To cope with these inconsistencies, researchers are going to have to expand
the framework of traditional crystallography.

In fact, all quasicrystals discovered so far have 5-fold symmetry. The Penrose lattice is a powerful means of coping
with such structures, because it avoids too rigorous rotational and translational symmetry, and it provides us with an elegant
order.

In geometry, there exist polyhedra with rigorous 5-fold symmetry. For example, if we project a dodecahedron or an

icosahedron on a screen, we can see regular pentagons.

The author first divided an icosahedron into ten types of small modules, then reconstructed various polyhedra by
combining the modules radially and symmetrically. He found a beautiful hierarchical structure in the polyhedra, where in each
layerinthereconstructionprocess there appear various 5-fold symmetrical polyhedra, including the dodecahedron, icosahedron
andrhombic triacontahedron. Furthermore, itis possible tofill the entire space in these models while maintaining a hierarchical

structure in the filling pattern.

Although this discovery was done outside the territory of translational symmetry in crystallography, it is quite
suggestive of a solution to the structure of 5-fold symmetrical crystals that grow radially and symmetrically in the natural world.

Crystallography first began as a
branch of geometry. From the 18th
century until the early 20th century,
crystallography researchers were devel-
oping an area of pure geometry of the
structures of crystal lattices and the
generalization of their patterns by inves-
tigating the symmetries which were
revealed by measurements of the angles
between adjacent faces of mineral crys-
tals. They established the crystal lattice
theory before the famous X-ray crystal
structure analysis was invented by M.
von Laue in 1912, which is deemed the
monumental start of modem crystallog-
raphy.

Crystal structure analysis is a
method by which we can decide the
atomic arrangement in a crystal by
making a diffraction image of a crystal
with an electron beam or X-ray. Note
that the diffraction image does not show
the edges and faces of a unit cell in the
crystal directly. Instead, it only shows a
transformed image which represents the
relation between atoms in the crystal.
Thus, in the image, the positions of the
atoms are ‘coded’ in an array of 2-
dimensional dots.

Hence, information about dis-
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tance between atoms (or bond length),
their bond angles, and the space group is
needed in advance in order to determine
the shape and scale of the unit lattice
from the diffraction image. In other
words, the atomic arrangement cannot
be determined without a minimal geo-
metrical structure and the pattern of a 3-
dimensional model.

Laue succeeded in adjusting the
scale of independent geometrical con-
cepts and the principles found in nature
to allow them to coincide with each
other and proved the correctness of the
geometrical modeling method.

Now, we can visualize the
atomic arrangement in a 3 - dimen-
sional form by using a geometrical
approach with the three basic visual
concepts of geometry (vertex, edge and
face) which allows us toreveal the rela-
tionship between dots in the diffraction
image.

Technological advances in crys-
tal structural analysis since Laue's in-
vention have brought in a number of
discoveries of quasicrystals with 5-fold
symmetry which are crystals whose ex-
istence has never before been conjec-
tured. The first quasicrystal Al-Li-Cu
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alloy was discovered by Hardy and
Silcock in 1955, 30 years before the
name ““quasicrystal” was first used for a
newly discovered Schechmanite Al -
Mn alloy.

In 1986, a French researcher, B.
Dubost, composed a very large quasic-
rystal of 1 nanometer in diameter, which
contained 1(%° atoms! It is an Al, Li,
Cu | alloy whose shape is a complete
rhombic triacontahedron. In 1988, A.
P. Tsai and others of the Metal Material
Laboratories of Tohoku University suc-
ceeded in composing a quasicrystal
Al Cu,, Fe ; of 2 nanometers in diame-
ter whose shape is a complete dodecahe-
dron.

Geometrical Modeling
of Quasicrystals

A 3-dimensional geometrical
model which can cope with 5-fold sym-
metry is necessary in order to investi-
gate the structures of these new quasi-
crystals. There have been a number of
proposed models in recent crystallogra-
phy. Proposed models are, of course,
decisively different from traditional
ones. However, most of them are based
on the traditional closest packing of
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Hierarchical structure model

The model discovered by the author fills the
space hierarchically starting from an icosahedron.
The shape of each shell maintains the icosahedral §-
3-2 symmetry through the growing process. Some
Platonic regular polyhedra and Archimedean semi-

synergetics@mac.com, YasushiKajikawa@aol.com

regular polyhedra which have 5-fold symmetry can
be seen here. These polyhedra will fill space indefi-
nitely, repeating a self-similar hierarchy every
time their edge lengths become three times greater
than before.
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Synergetics modules

The model discovered by the author in which the
space will be filled hierarchically on the basis of
icosahedron consists of ten types of modules called
the synergetics modules. These modules are ob-
tained by dividing the icosahedron into two pen-
tagonal bipyramids and one scooped out pentaprism
and continuing to divide them at vertices, mid-
points of edges, midpoints of diagonals and so on.
The resulting ten types of modules are thought of as
ultimate units in this division.

All of five tetrahedron modules A, C, G, E, I
and five octahedron modules B, D, H, F, ] are com-
posed of only triangular faces. The volume of an
octahedral module is four times as large as that of

Qutside Modules

Inside Modules

—
|
Outside Modules P
the corresponding tetrahedral module. (For ex-
ample, the volume of F is four times as large as that
of E.) The tetrahedron I is known to be able to
constitute the whole icosahedron by itself. Let the
volume of I be 1. Then, the volumes of the other
tetrahedra G, A, and C are 1/ r, 2/ r, and 2/ r
squared, respectively, where r means the golden
ratio.

The synergetics modules can be classified
into the outside modules A, B, C, D, I, J whose face
can be seen from outside, and the inside modules E,

spheres of the same diameter, and the all-
space filling by two types of parallelepi-
peds called A, and O, respectively.

The closest packing of spheres
of the same diameter has served as the
traditional geometrical structural model
to represent crystal structures. How-
ever, it cannot create polyhedra which
have 5-fold symmetry, such as an icosa-
hedron, a rhombic triacontahedron, or a
dodecahedroncomposedof the samesized
regular pentagons.

To construct an icosahedron by
the closest packing of spheres, we have
to reduce the size of the central sphere,
around which 12 spheres of the same
diameter can be arranged, and if we want
to enlarge the icosahedron by adding
further spheres around it, it will soon
turn out to be impossible because the
bond angles and distances between
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spheres cannot be maintained exactly.
Gaps in the outer shell will stop the
growth.

This means that the closest
packing sphere model cannot cope with
even the simplest icosahedron and is
thought to be inappropriate for the 3-
dimensional geometrical model of qua-
sicrystals which have 5-fold symmetry.

S. Bear is the first researcher
who in 1970 discovered that A, and O,
can yield 5-fold symmetry. He con-
structed arhombictriacontahedronusing
ten parallelepipeds each of which is
classified into either A, or O,. The
lengths of the diagonals of each paral-
lelepiped equal the golden ratio. Then,
for the first time, he developed a 3-
dimensional spacefillingmodel,in which
the internal construction of the units is
non-periodic and the shape has 5-fold
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symmetry. He also succeeded in com-
bining rhombic triacontahedra by over-
lapping adjacent ones without losing
the 5-fold symmetry. He tried another
all-space filling model using parallele-
pipeds whose diagomal ratios are differ-
ent from those of A, and O,, and found
that 120 parallelepipeds of five types can
fill a 5-fold symmetric rhombic ennea-
contahedronnon-periodically.

In 1981, A. L. Mackay discov-
ered 3-dimensional Penrose tiling and it
became known that the parallelepipeds
A, and O, are the units which can also fill
arhombicicosahedronand arhombicdo-
decahedron along with the rhombic tri-
acontahedron. However, it was impos-
sible 1o fill polyhedra with 5-fold sym-
metry like an icosahedron or a dodecahe-
dron.

Since the discovery of quasi-
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F, G, H which are hidden inside
the icosahedron. Though icosa-
hedra cannot fill the space with-
out gaps, these ten types of
modules can fill 5-3-2 symmetric
space.

crystals, it seems that only these ap-
proaches have been tried in order to prove
the possibility of 5-fold symmetry in
the 3-dimensional geometrical model.
Former space filling models in 3-dimen-
sional geometry aimed at filling the
entire space.

However, I thought that the fun-
damental problem of these space filling
models with respect to quasicrystals was
how to construct a pure geometrical
space filling model in which an asym-
metrical or non-periodic internal struc-
ture could comprise a symmetrical outer
shape. I believed that pursuing the units
by which 5-fold symmetric polyhedra
can be composed would lead to a new
geometry of symmetry. This was the
motivation that started me to investigate
a generalized geometrical all-space fill-
ing model which shows the way to fill
any closed 5-fold symmetrical polyhe-
dron without gap or inconsistency.
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Hierarchical Model of Icosa-
hedron and Shell Filling

In October 1989, I found that an
icosahedroncan bedivided into anumber
of triangularized modules of ten types
and that they can comprise more than
one shell of different geometrical struc-
tures which grow concentrically and
hierarchically to make upan icosahedron
with 5-fold symmetry. As a result of my
particular asymmetrical modular divi-
sions, the outermost shell of the icosahe-
dron shows a regular triangularizedpat-
tern in which the length of each edge is
an integer multiple of the original edge
length. This means that an icosahedron
can grow by this multiplication. The
following is the first report on the indefi-
nite growth of icosahedra.

My ten new types of modules
are called synergetics modules. These
modules can all-space fill higher fre-
quency icosahedrons each of whose faces
is a lattice of regular triangles. We can
make an icosahedron grow by dividing
its edges into a number of equaily long
parts and connecting these divisions in a
triangular manner. The number of these
divisionsis called the frequency (f) of the
icosahedron.

My icosahedron grows symmet-
rically in the radial direction. Synerge-
tics modules have both growth ability
and interchangeability in this hierarchy.
All-space filling models with such char-
acteristics have never been reported in
the past history of geometry, physics or
crystallography.

In the growth hierarchy from a
1f(onefrequency)icosahedron withedge
length 1.0 to a 3f (three frequency)
icosahedron, there appear recognizable
symetrical polyhedra, including the trun-
cated icosahedron with edge length 1.0,
the icosidodecahedron with edge length
1.0 and the dodecahedron with edge
length 1.618. All polyhedra in this hi-
erarchy have perfect 5-3-2 symmetry.

Note that the 5-3-2 symmeltry is
seen in the exterior shape of these poly-
hedra, not in the internal arrangement of
modules nor in the triangularized pattern
on their face. In fact, there is more than
one combination or arrangement of the
modules for each shell.

On the outside layer of the ¥
icosahedron, the self-similar patterns of
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all the shell structures appearing in the
hierarchy between the 1f and 3f icosa-
hedron are replicated by a multiple of 3,
because the number of divisions, or
frequency, has to be a multiple of 3 in
order to make each of the 20 vertices of
the dodecahedron contact the center of
the triangle lattice on the corresponding
face of the outericosahedron.

The 3f icosahedron can be con-
sidered as a minimum shell structure
in the hierarchy in the sense that all the
ten types of modules are used in it for the
first time. In the & (six frequency)
icosahedron, all the shell structures will
appear again with their edge lengths
doubled. However, in the 4 (four fre-
quency) and 5f (five frequency) icosahe-
dra, some of the layers are lost. That is,
not all frequencies make icosahedra with
complete hierarchical structures.

Super-high-frequency icosahedra
are filled by iterating the hierarchy of the
shell structure hierarchies. Thus, we can

The 3f icosahedron and 3f do-
decahedron

This figure illustrates the
contrast between 3f (three fre-
quency) icosahedra whose faces
are composed of only outside
modules and 3f (three frequency)
dodecahedra whose faces are com-
posed of only inside modules.
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dodecahedron with edge length 1.618
(the second nucleus)
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If we change the combination of modules from the first dodecahedron, we can obtain a rhombic tri-
acontahedron which also has 5-3-2 symmetry. After that, the periodicity of the hierarchy will be 2.
Beyond the first dodecahedron, only inside modules are used to make further shells. The face of the rhombic
triacontahedron becomes a lattice of isosceles triangles. According to the author's model, two systems
of the forms are possible. Quasicrystal alloys of millimetric size whose shapes are a rhombic triacon-
tahedron and a dodecahedron have already been created. This choice from two may be explained by the
hierarchical model for the super-high frequency rhombic triacontahedron. If this is the case, there may
be an icosahedral quasicrystal alloy of three metal elements. The number immediately following a module
name indicates the number of modules to be used in the growth step. Note that it is a multiple of 12.
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consider the concentrically expanding
hierarchy of the polyhedra with 5-fold
symmetry a hierarchy which recurs peri-
odically.

So far, icosahedra with 5-fold
symmetry have been thought impos-
sible to all-space fill without inconsis-
tencies or gaps. However, it has now
been proved that growingicosahedracan
be all-space filled by using thesynerge-
tics modules.

Synergetics modules

The north pole and south pole
among the 12 vertices of the icosahedron
always function additionally to the sys-
tem. In the formation process of the
synergetics modules, the abstractness of
the ‘additive twoness’ is indeed replayed
visually. These two poles are clearly
distinguished from other vertices. (See
the article by me, “"Folding Polyhedra"
in Saiensu, August 1984.)

To obtain the synergetics mod-
ules, we first have to divide an icosahe-
dron into three basic parts: the arctic
part, the equator part and the antarctic
part, all of which are symmetrical with
respect to an axis penetrating through
the north and south poles. The arctic and
antarctic parts are two identical pentago-
nal bi-pyramids and the equator part is a
ring shape which is a pentaprism with
both top and bottom scooped out. The
volumes of the pentagonal bi-pyramid
poles and the scooped out pentaprism are
5 and 10, respectively, if the volume of
the icosahedron is assumed to be 20.

Next, we divide each pentagonal
bi-pyramid into two (outer and inner)
pentagonal pyramids by a plane perpen-
dicular to its axis. This split is fund-
mentally related to the golden ratio.
Further, we divideeach pentagonal pyra-
mid into three tetrahedra. We also divide
the scooped out pentaprism into ten
identical tetrahedra. Now, we have five
types of tetrahedra, two from the outer
pentagonal pyramids, two from the inner
pentagonal pyramids and one from the
equator scooped out pentaprism.

If we continue dividing each
tetrahedron into four small similar tetra-
hedra and one small octahedron by split-
ting it at lines connecting its edge mid-
points, we obtain five types of small
tetrahedra and five types of small octahe-
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lcosahedral cluster structure with perfect 5-fold symmetry
The If icosahedron can be composed of only tetrahedral modules
1. (Here, we use the same notation If, 2f, ...) The 2f and 3f icosahedra

cannot be composed of I modules only.
octahedral module J. These icosahedra are formed by radially and

ing

We have to use the correspond-

symmetrically combining 20 tetrahedral subunits composed of modules
I and J. There are no shell structures other than the icosahedron.

dra. Of course, the volume of each
octahedron is four times as large as that
of the corresponding tetrahedron.

All of the synergetics modules
havetriangular faces. However, thereare
only five types of triangular faces. Four
of them are triangles with two equal
sides, i.e, isosceles triangles with edge
lengths 1.0 (the edge length of the
original icosahedron), 0.95 (the distance
betweenthecenteroftheicosahedronand
one of its vertices), or 1.618 (the length
of adiagonal of the pentagonal face of the
icosahedron). The other triangular face
type is an equilateral triangle.

Complementariness
of the Synergetics Modules

The ten types of modules are
classified into six outside modules and
fourinsidemodules, depending on where
they are located in the original icosahe-
dron. Modules can be joined to each
other if they have the same mirror image
face. However, the outermost faces of a
growing icosahedron can consist only
of equilateral triangles with edge length
1.0, which is common to all outside
modules.

The fourtypes of inside modules
can be arranged to form another shell
inside the growing icosahedron’s outer
shell. Outside modules can in turn be ar-
ranged to form another inner shell to link
with more inner shells. If faces of inside
modules form some intermediate poly-
hedron, this polyhedron will not be m
icosahedron. In other words, the forma-
tion of shells is intrinsically related to
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the complementariness of the outside
and inside of the icosahedron.
Tetrahedral modulesand octahe-
dral modules are joined to each other in
keeping with this complementary rela-
tionship. The first If icosahedron is
composed by joining only tetrahedral
modules with each other. However, in
all other shell structures, each tetrahedral
face must be joined to the face of an
octahedron that can be joined to another
tetrahedron on another face. That is, nei-
ther tetrahedral modules nor octahedral
modules alone can fill these shells.

Nucleus for Growth

Historically, since they are dual
to each other, we have not been able to
determine which polyhedron is more
fundamental, the icosahedron or the do-
decahedron. However, in our growth
system for the icosahedron, they differ in
the hierarchy. We can distinguish them
clearly by examining whether the pat-
tern of the shell surface consists of only
outside modules or only inside modules.

This leads to the important con-
clusion that the icosahedron belongs to
a more fundamental hierarchy than the
dodecahedron. The 1ficosahedronisa5-
fold symmetrical polyhedron which can
be composed of the minimum number
of modules. However, the very center of
the 1ficosahedron, or its nucleus can be
thought of as a (f (zero frequency) icosa-
hedron. In this sense, a single point is
an initial polyhedron which has a hierar-
chy for the icosahedron already in it.

In our hierarchy, there are axes
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Tiling

In the concentric polyhedral hierarchy, the synergetics modules
make possible such generalizations as 5-fold symmetry, periodicity of

the hierarchy and radial growth. However, if we limit them to construct
only a plane (not a mathematically rigorous plane since it has some
thickness), we obtain non-periodic arrangements. This figure illus-
trates an arrangement composed of four kinds of inside modules E, F,
G and H, which have a global orientation order and a global translation

order.
identical.

The patterns of the face (left) and back (right) are never
Any Penrose tiling pattern can be realized in this model.

we pile up symmetric layer on layer, and so on, we obtain a periodic

structure with respect to the vertical axis.

On the other hand, if we use

the different modules A, B, C, and D, we obtain a layer with the same

pattern but with a volume 2/ r times as large as before.

The author calls

this tiling system synergetics tiling.

which radiate from the center toward the
12 vertices of the icosahedron, axes
which radiate from the center toward the
centers of the 20 faces of the icosahedron
and axes which radiate from the center
toward the the 30 edge midpoints of the
icosahedron. Thus, there are 31 axes of
5-3-2 rotation symmetry in total. In the
hierarchy of growth, any point (includ-
ing the nucleus) where the vertices of
modules meet contains the 31 rotation
axes. The bond angle of the edges of
modules at each point is a central angle
made by some combination of these 31
axes. At the maximum in our hierarchy,
18 directions are selected among the 62
radial directions.

Both the local non-periodicity
andthe synergetichierarchy emerge from
the angular divisions made by these axes
at the nucleus. The asymmetrical com-
binations of modules are caused primar-
ily by the symmetry of the nucleus
where three types of rotational axes can
co-exist.

The concentric polyhedral shell
structures grow symmetrically with re-
spect to the 5-3-2 rotational axes from
the nucleus. The growth of the arrange-
ment by the synergetics modules is gov-
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erned by the rule that the bond angles
must match each other at any point, no
matter how non-periodic and asymmet-
rical these angles are.

A point must contain the sys-
tem in order to make sure the combina-
tion of synergetics modules will grow
radially. This leads to the idea that the
point represents a complex of realistic
substances with specific properties,
rather than the idea in traditional Euclid-
ean geometry that a point has no parts in
1t.

Radial Growth on
Rotation Axis

In the growing icosahedron,
there are parallel layers expandingsuc-
cessively which are perpendicular to any
5-fold axis. The cross section perpen-
dicular to the axis is always a regular
pentagon. It is composed of outside
modules and inside modules joined to
each other. There are two kinds of thick-
nesses of the pentagonal layers which
can be expressed in terms of the golden
ratio z if we assume the distance be-
tween the center of a 1f icosahedron and
its surface equilateral triangles to be 1.
Since the boundary between layers is
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also a boundary between shells, we can
remove the layer from the hierarchy.

Parallel surfaces of regular pen-
tagonal layers have intrinsically non-
periodic patterns. These patterns are the
result of the 3-dimensional combination
of modules. Adjoining patterns are
mirror images of each other. The com-
bination of modules has 3-2 rotation
symmetry. Furthermore, a pattern has
either right-handedness or left-handed-
ness. Each shell shows right-handed-
ness or left-handedness alternately on its
surface pattern, which is integrated into
the inside surface of the next shell.

Perpendicular to the 3-fold axes,
equilateral triangles expand out succes-
sively. These triangular layers cannot
be removed since modules which com-
pose the layers between two equilateral
triangles are overlapping modules which
compose the pentagonal layers perpen-
dicular to the 5-fold axes. The thickness
of a triangular layer is an integer mul-
tiple of the distance between the center of
the 1ficosahedronandits face equilateral
triangles. The patterns on these layer
surfaces are periodic.

Withrespectto 2-fold axes, there
is no module which has a surface perpen-
dicular to these axes.

The ten types of synergetics
modules can be classified into three
classes by their height. Three kinds of
layers appearing on the 5-fold and the 3-
fold axes are truss structures of three
thicknesses, each of which is composed
of tetrahedral and octahedral modules of
the same height. This is an economic
and dynamically stable combination of
modules.

Synergetics Tiling

I found a generalization which abstracts
the method of module arrangement in
the layers on the 5-fold axis in October
1989, and named it Synergetics Tiling.
We can make tilings of two different
thicknesses, which expand horizontally
the layer of either the inside modules or
the outside modules on the 5-fold axes.
These tilings are non-periodic and do not
have 5-fold symmetry.

The patterns appearing on both
sides of these tilings can reproduce all of
the non-periodic Penrose tilings. The
patterns on both sides are never identical
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to each other. Moreover, onecanarrange
modules so that the pattern on the face is
not periodic, while the pattern on the
back has perfect 10-fold symmetry.

If we pile up the layers of the
Synergetics Tiling so as to make the
adjoining patterns match each other, we
have a periodic structure in the vertical
direction which can fill the entire space.
Thereason whythese modules can spread
to infinity is the degree of freedom that
exists when there is such a high level of
possible combinations, 20 directions at
maximum out of 62 radial total direc-
tions.

Quantization by Modules
Let the volume of the module I and E be
1. I found that the formula which tells
the volume V of a growing icosahedron
with frequency f is represented as:

V=2X(2X5)f?

Although modules other than I and E
have irrational volumes, they add up to
an integer value when they compose an
icosahedron, eventually canceling the
irrationality of each other . Moreover,
the volume of any shell structure is also
an integer. Hence, the volumes of the
shell structures are quantized by the
synergetics modules and increase pro-
portionally to the cube of the frequency.

Next, let f be the number of
divisions or frequency of an edge, X be
1 for a regular tetrahedron, 2 for a regu-
lar octahedron, 5 for a cuboctahedron or
an icosahedron. In 1960, R. Buckmin-
ster Fuller found that when a regular
polyhedron is filled closely by spheres,
the number of spheres on the faces, say
N, can be represented as:

N=2Xf2+2

He also found a similar formula for the
number of points on the faces of an
icosahedron which is divided into equi-
lateral triangles.

Fuller's general formula also
holds true for our hierarchical structural
model of the icosahedron as follows:

N=2X5f%+2

where N means the number of points on
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the outer shell faces (points where edges
of modules meet). That is, the number
of points on the outer shell faces of an
icosahedronisthe square of the frequency
times the particular prime number 5,
multiplied by 2, and finally plus 2. Here
we can notice another appearance of
additive twoness.

Clusters of such rare gas atoms
as argon and xenon are stable since they
form icosahedral packing structures.
Their magic numbers are said to be 13,
55, and 147. These values can be
obtained by adding successively the
numbers of the points of the Of icosahe-
dron, 1f icosahedron, 2f icosahedron and
3f icosahedron, 1, 12, 42, 92, respec-

Regular hexahedron which in-
scribes a dodecahedron
We will ultimately obtain
only tetrahedral modules if we
divide the octahedral modules in
the synergetics modules and de-
crease the degree of symmetry. If
we use such ‘minimum" tetrahe-
dral modules, we can fill a regular
hexahedron which inscribes a do-
decahedron. In this case, modules
are arranged symmetrically with
respect to the nucleus of the ico-
sahedron which takes the regular
hexahedral arrangement. There-
fore, the 5-3-2 symmetry and the
4-3-2 symmetry can coexist in
this space filling. In other words,
if we use these tetrahedral mod-
ules, we can obtain both hierar-
chical systems of icosahedra and
regular hexahedra. Note that even
in this case, the golden ratio be-
tween volumes of modules s
kept.

tively. That is, 13=1+12, 55=13+42,
and 147=55+92. The synergetics mod-
ules used here are only the tetrahedron I
and the octahedron J. The filling has no
internal dodecahedron structure but has
perfect 5-fold symmetry.

This means that theicosahedron
in a cluster form has no non-periodic
combination and has a self-similar struc-
ture with perfect 5-fold symmetry. This
geometrical model is a good example to
explain non-formative quantum leaps in
physics. The fact that the magic num-
bers can be calculated this way, even
though the edges of modules I and J are
not equilateral, suggests that the closest
packing by identical spheres is not an
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The internal structure of a Hypermatrix

The author calls the wire-frame model of the hierarchy made by
the synergetics modules the hypermatrix. The three kinds of vectors

bic triacontahedron that has 5-3-2 sym-
metry hierarchically with a 3-dimen-
sional combination of irrational diago-
nals and non-integer angles as in the case
of the icosahedron.

In projective geometry, a rhom-
bic triacontahedron can be constructed
from the duality of the golden ratio
between an icosahedron and a dodecahe-
dron. However, it cannot be constructed
in our hierarchical system, although
icosahedra, dodecahedra, and rhombic
triacontahedra with the same centeral
nucleus all have 5-3-2 symmetry. The
reasonis thatadodecahedron whoseedge
length is a multiple of 1.618 can in-
scribe an icosahedron whose edge length
is a multiple of 1.0 while a dodecahedron
whose edge length is a multiple of 1.0
can inscribe a rhombic triacontahedron
whose edge length is a multiple of 0.95.
Therefore dodecahedra, icosahedra and
rhombic triacontahedra cannot consti-
tute a single hierarchical structure. That
is, icosahedra and rhombic triacontahe-
dra constitute their own hierarchical
structures, respectively.

On the other hand, these two
hierarchical structures do share some
first shells from the first If icosahedron
with edge length 1.0 to the first dodeca-

whose lengths are in the ratios 0.95, 1.0 & 1.618 and the angles of hedron with edge length 1.618. In the

combinations of the 31 rotation axes make up a complicated shell struc-
ture system. On the 5-fold axes (one of them is shown in the figure) and
the 3-fold axes, there are parallel and consecutive layers perpendicu-
lar to the axes. Each layer is a non-equilateral and non-periodic truss
composed of tetrahedra and octahedra, which can be obtained at a small
cost of energy and is dynamically stable. There must be a regular
pentagon on the layers perpendicular to a 5-fold axis. The number 3 in
the figure illustrates the layer which appears in the 4f icosahedron.

appropriate geometrical model for these
clusters.

Synergetics modules with grow-
th ability and interchangeability re-
peated in hierarchial combination quan-
tize the volume of 5-fold symmetric
polyhedra. There exists a system which
cannot be guessed only from the individ-
ual modules. Each synergetics module
does not appear as a macroscopic shape
in the hierarchy. In other words, syner-
getics modules form the structures and
patterns as a whole by some system un-
predictable from its parts.

Hierarchical Model of Rhom-
bic Triacontahedron
My discovery of the hicrarchical model
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for the rhombic triacontahedron was
motivated by the discovery of a dodeca-
hedron whose edge length is an integer
multiple of 1.0 (the edge length of the ¥
icosahedron) in the course of the com-
bining of synergetics modules. Dodeca-
hedra whose edge length is an integer
multiple of 1.618 are necessary to grow
icosahedra whose edge length is an inte-
ger multiple of 1.0, while dodecahedra
whose edge length is an integer multiple
of 1.0 are not needed at all.

I thought that a dodecahedran
whose edge length is an integer multiple
of 1.0 belonged to another hierarchy and
tried to find a rhombic triacontahedron
which circumscribes this dodecahedron.
I eventually succeeded in filling a rhom-
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hierarchy of rhombic triacontahedra,
however, only inside modules are used
beyond the first dodecahedron.

Thus, if we call the 1f icosahe-
dron the initial nucleus, the first dodeca-
hedron common to the both hierarchies
can be thought of as the second nucleus.
Here emerges a hierarchy of nucleses.
The initial nucleus and the second nu-
cleus are dual to each other. The duality
in the hierarchy is based on the time axis
of the frequency growth ( increasing of
the number of frequency) .

As the frequency of rhombic
triacontahedra whose rhombic faces
make a lattice of isosceles triangles
increases, synergetics modules are able
to completely fill them. Rhombic tri-
acontahedra grow symmetrically, form-
ing non-periodic parallel layers perpen-
dicular to the radial direction from the
center just as in icosahedra. Thesyner-
getics modules also maintain growth
ability and interchangeability in this
case.
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The first rhombic triacontahe-
dron appearing in this hierarchy is the 2f
rhombic triacontahedron with edge
lengths of 0.95. Before it appears, there
appear a 2f dodecahedron with edge
length 1.0, a 1f truncated rhombic heca-
toicosahedron with edge length 1.618
and a 1f dodecahedron with edge length
1.618 which is common to the hierarchy
of icosahedra. They all have 5-3-2
symmetry.

Beyond the 2f rhombic triacon-
tahedron, similar shell patterns to those
whichhave appeared sofararereplicated
every second time. That is, the period of
the hierarchy is 2.

A rhombic triakisicosahedon in-
scribes the 1f dodecahedron with edge
length 1.618. A rhombic icosahedron
adjoins to each of its 12 cavities in the
hierarchy of rhombic triacontahedra. A

1frhombictriacontahedron can beformed
by sharing structural parts of these two
kinds of polyhedra.

Choose one 5-fold axis, then we
can find a 1f rhombic triacontahedron
whose center is on the axis and which
contacts both the center and one of the
vertices of the 2f rhombic triacontahe-
dron. This 1f rhombic triacontahedron
does not share the center with other shell
structures, and its diameter is just half
that of the 2f rhombic triacontahedron.

Hence wenow havetwo 1frthom-
bic triacontahedra which contact each
other at the center of the hierarchy.

Rhombic triakisicosahedra,
rhombic triacontahedra and rhombic
icosahedra can be composed of A, and
O ,. However, there appear parallel
layers withnon-periodic patterns succes-
sively in our hierarchical system of

Rotation symmetry axes of the icosahedron

synergetics modules unlike the con-
struction by A ( and O .. There are 7
layers in the 1f rhombic triacontahedron
and 14 layers in the 2 rhombic triacon-
tahedron.

Ifoundtwonew polyhedrainthe
growth process from a Ifto a 2f rhombic
triacontahedron. One is the rhombic he-
catoicosahedron composed of 120 iden-
tical rhombuses. This polyhedron can
be obtained by joining 12 rhombic icosa-
hedra around a rhombic triakisicosa-
hedron. The other is a truncated rhombic
triacontahedron composed of 12 regular
pentagons and 30 regular hexagons.

There is another hierarchy in
which a Kepler's small stellated dodeca-
hedron can be obtained by joining 12
pentagonal pyramids composed of mod-
ules F and E to a 2f thombic triaconta-
hedron. As the vacant space among these

Axes which link two antipodal vertices are 5-

fold axes (a). Since there are 12 vertices, there are
six 5-fold axes. There are ten 3-fold axes, each of
which links two antipodal centers of the faces (b).
There are fifteen 2-fold axes, each of which links
two antipodal midpoints of the edges (c). Hence we
have thirty-one 5-3-2 symmetry axes in total. We
call the cross section which cuts the icosahedron

into two identical pieces at a plane perpendicular to
a rotational axis a great circle. There are 31 great
circles since there are 6 ‘great circles’ (red) on 5-
Jold axes, 10 (green) on 3-fold axes, and 15 (blue)
on 2-fold axes. The 8 angles which appear in the
synergetics modules are the central angles between
these great circles: 31.717° 36° 58.283° 60°,
63.435° 72° 108° and 116.565°.
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Hypermatrix

Synergetics modules can fill the
two Platonic regular polyhedra, the do-
decahedron and the icosahedron, which
were not filled by the unit cells in
traditional crystallography, but they can
also fill the rhombic triacontahedron,
which was a basic element in traditional
crystallography. This suggests hat the
hierarchies of icosahedra and rhombic
triacontahedra bring in new lattices with
differentcharacteristics fromthose space
lattices in traditional crystallography.

The space lattices which explain
crystal structures in traditional crystal-
lography are composed of identical unit
lattices that are arranged periodically,
eachof which hasthe same peripheral ar-
rangement. Each point can be obtained
by translation and all points are equiva-
lent. The form of the basic unit cell that
determines the crystal can vary indefi-
nitely.

The lattices formed by the hier-
archy made from synergetics modules
form a kind of wire frame for the corre-
sponding shell structures. Unlike the
lattices so far, they do not spread infi-
nitely, but form a closed space within
each shell structure. This growth limit
results from 5-fold symmetry.

The lattices growing along the

5-3-2 Rotational Symmetry axes

A rhombic triacontahedron can be divided into 120 identical
tetrahedra (a-b-c-o in the figure). Once this division is done, we can
integrate polyhedra with 5-3-2 rotation symmetry simultaneously. If
we focus our attention on the rhombuses on the surface (blue), we find
a rhombic triacontahedron. If we focus our attention on the longer
diagonals (red) in the rhombuses, we find an icosahedron. If we focus
our attention on the shorter diagonals (yellow) in the rhombuses, we
find a dodecahedron. In other words, 62 radial lines from the center
amount to 31 rotational symmetry axes which are common to the
rhombic triacontahedron, icosahedron and dodecahedron. All the com-
binations of edges at lattice points in the hypermatrix proposed by the
author can be represented by the combination of the central angles made

by these 31 rotational symmetry axes.

pyramids isfilled, Kepler's great dodeca-
hedron appears. If we go further to fill
the triangular pyramidal cavities in the
great dodecahedron, we get another big
rhombic triacontahedron.

The possibility of radial sym-
metrical combinations of modules in-
creases and 5-fold symmetry can be
reproduced more abundantly as the fre-
quency increases. Since only inside
modules are used in the growth process,
the volumes of polyhedra appearing in
the hierarchy of rhombic triacontahedra
are not integer valued except for the first
few. Instead, they are intrinsically re-
lated to the golden ratio.

The formulas I discovered with
respect to the hierarchy of rhombic tri-
acontahedra are as follows :

N=(2X3X5)f?+2
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V=
(1+V5) X (2 X3 X5)f3

where N, V & f mean the number of
vertices, the volume and the frequency
(which has to be even), respectively.

From another viewpoint, a
rhombic triacontahedron is obtained by
adding 12 pentagonal pyramids to a do-
decahedron. Hence we can calculate the
volume of a dodecahedron whose edge
length is an integer multiple of 1.0 by
the formula:

V=
(1+V5) X (2X 3 X 5)f?
—-12~5¢3

The volume of each pentagonal pyramid
is V5 .
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rotational symmetrical axes in the hier-
archies of icosahedra and rhombic tri-
acontahedra are called the hypermatrix.

The ratios of lengths for the
three vectors in the hypermatrix are
0.95, 1.0 & 1.618, lengths which exist
inherently in the icosahedron. The space
group hypermatrix for concentric poly-
hedra is formed by these ratios and the 31
rotational axes; again they are the 12
radial directions toward the icosahedron
vertices, 20 radial diregions toward the
icosahedron face centers and 30 radial
directions toward the icosahedron edge
centers.

Any point has 5-3-2 symmetry
and thereby has the possibility of being
a nucleus. However, one of the points
is selected as the nucleus, and lattice
points whose peripheral arrangementare
mutually different are obtained by sym-
metrical radiation of the ten types ofsyn-
ergetics modules.
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As described above, there are
two hierarchies beyond the 1f dodecahe-
dron with edge length 1.618. However,
the concepts of frequency, 5-3-2 symme-
try, shell filling, quantization, 31 rota-
tion axes, complementariness of tetra-
hedroal and octahedral modules, non-
periodicity, periodicity of the hierarchy,
face and back, polarity, right-handedness
and left-handedness, and radial growth
are independent on the scale of the
hypermatrix.

Five-fold symmetry is one of
the generalized characteristics of the
hypermatrix integrated radially in the
concentric hierarchy.

Forms and Models

In 1985, L. Pauling pointed out
that the quasicrystal alloy Al . Mn
with 5-fold symmetry does not match
any Bravais lattice and has a twin struc-
ture of more than one regular hexahedra.
In 1986, T. Rajasekharan reported that
the 5-3-2 symmetric units of the quasic-
rystal alloy Mg, (Al, Zn) ,; are filled in
the body-centered cubic lattice and that
quasicrystals of AICuFe family form the
face-centered cubic lattice.

A. P. Tsai and others confirmed
in their experiments that if three metal
elements can be fused into a metal alloy
by the liquid quenching method, the
ratio of the radii of the solvent atom and
the solute atom is 1 to between 0.85 and
0.95. The other ratio 1.618 can be de-
tected as the distance between atoms by
electron diffraction image.

This suggests an important
analogy between the forms of quasicrys-
tals and the formation and growth of the
synergetics modules.

Eachoctahedroninthesynerget-
ics modules can be further divided sym-
metrically into two tetrahedra. Thus, we
havenow only tetrahedral modules. There-
fore, these tetrahedral modules can be
thought of as the ultimate modules with
the highest interchangeability that can
be derived from the icosahedron.

By using these ultimate tetrahe-
dral modules, we can obtain a shell in the
shape of aregular hexahedron that hasno
5-fold symmetry in the hierarchy of
icosahedra. This is a regular hexahedron
with edge length 2.618 that inscribes the
1f dodecahedron with edge length 1.618.
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Here, the 4-fold axis of the hexahedron
and 2-fold axis of the icosahedron coin-
cide with each other, as well as the 3-fold
axis of thehexahedron and the 3-fold axis
of the icosahedron.

The fact that some of the 31
rotational axes of theicosahedronand the
rotational axes of the hexahedron are
common in the hAypermatrix suggests
that the 4-3-2 symmetry of the hexahe-
dron and the 5-3-2 symmetry of the
icosahedron are fused physically.

Moreover, the fact that there are
5-fold symmetric shells inside the hexa-
hedron (in fact, there is an icosahedron
and an icosidodecahedron inside) sug-
gests that the discrimination between
crystals and quasicrystals by the concept
of periodicity is not essential. This fact
seems to fade out the contrast between
quasicrystals and crystals smoothly and
naturally.

Form is the spatial arrangement
of constituents in a material. Positions
of individual atoms have come to be
detectable by the rapid development of
electrondiffractionand X-ray diffraction
technology. However, the structural
patterns behind the form appear to be
more important than the information of
individual constituents.

In other words, the arrangement
of the modules is far more important
than the forms of the modules them-
selves.

The hypermatrix displays the
internal interaction between real sub-
stances and concepts, but is not an
illustrative reproduction of the spatial
arrangement of the constituents of real
materials. Hierarchical models made
with the synergetics modules do not
require that there really exist ten new
types of unit cells corresponding to the
modules. Instead, it is a visualization of
a closed abstract system of relations
between atoms.

The hypermatrix woven by the
angles of the three kinds of rotational
axes of the icosahedron and the three
kinds of vectors of the synergetics mod-
ules represents a symmetry with very
high structural stability, as in nature,
where all things are structured in tri-
angles.
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